would this not mean that we are without souls or free will?
Originally posted by sligtlyskeptical
So just how did they arrive at the super string equation? The answer is they used computers and the software within them. Thus it should be no suprise that the equation has characteristics of software.
Had they first discovered the superstring equation and then found software code that could be copied from it, then you may have something to talk about.
Originally posted by Afterthought
I'm certainly not for manipulating anything that is functioning as it should naturally.
“The life of this world is nothing but the enjoyment of delusion.”
(Holy Qur’an, Surah Al-Hadid (The Iron), 57:20
Originally posted by Shadow Herder
reply to post by Ajax84
What are you trying to tell me, that I can dodge bullets?
From theoretical physics to codes
As it turns out, it is not just four-colour adinkras that can be separated into two smaller adinkras with the same number of colours; adinkras with more than four colours also possess this property of separability. But why does this occur only for four or more colours? Investigating this question launched our "treasure hunt" in a completely unexpected direction: computer codes.
Modern computer and communication technologies have come to prominence by transmitting data rapidly and accurately. These data consist principally of strings of ones and zeros (called bits) written in long sequences called "words". When these computer words are transmitted from a source to a receiver, there is always the chance that static noise in the system can alter the content of any word. Hence, the transmitted word might arrive at the receiver as pure gibberish.
One of the first people to confront this problem was the mathematician Richard Hamming, who worked on the Manhattan Project during the Second World War. In 1950 he introduced the idea of "error-correcting codes" that could remove or work around any un wanted changes to a transmitted signal. Hamming's idea was for the sending computer to insert extra bits into words in a specific manner such that the receiving computer could, by looking at the extra bits, detect and correct errors introduced by the transmission process. His algorithm for the insertion of these extra bits is known as the "Hamming code". The construction of such error-correcting codes has been pursued since the beginning of the computer age and many different codes now exist. These are typically divided into families; for example, the "check-sum extended Hamming code" is a rather complicated variant of the Hamming code and it belongs to a family known as "doubly even self-dual linear binary error-correcting block codes" (an amazing mouthful!). Yet whatever family they belong to, all error-correction codes serve the same function: they are used to detect errors and allow the correct transmission of digital data.
How does this relate to adinkras? The middle adinkra in figure 4 is obtained by folding the image on the left of the figure. The folding involves taking pairs of the dots of the same type and "fusing them together" as if they were made of clay. In general, an adinkra-folding process will lead to diagrams where the associated equations do not possess the SUSY property. In order to ensure that this property is retained, we must carry out the fusing in such a way that white dots are only fused with other white dots, black dots with other black dots, and lines of a given colour and dashing are only joined with lines that possess the same properties. Most foldings violate this, but there is one exception — and it happens to be related to a folding that involves doubly even self-dual linear binary error-correcting block codes.
The adinkra in figure 5 is the same as the left-hand part of figure 4 but for simplicity it is shown without dashed edges. We pick the bottom dot as a starting point and assign it an address of (0000). To move to any of the dots at the second level requires traversing one of the coloured links. There are four distinct ways in which this can be done. To move to any dot at the third level from the bottom dot requires the use of two different coloured links, and so on for the rest of the adinkra. In this way, every dot is assigned an address, from (0000) to (1111). These sequences of ones and zeros are binary computer words.
To accomplish the folding that maintains the SUSY property in the associated equations, we must begin by squeezing the bottom dot together with the upper dot. When their addresses are added bit-wise to one another, this yields the sequence (1111). If we continue this folding process, always choosing pairs of dots so that their associated "words" sum bit-wise to (1111), we can transform the adinkra on the left-hand side of figure 4 to the one on the right. Thus, maintaining the equations' SUSY property requires that the particular sequence of bits given by (1111) be used in the folding process. The process used to meet this criterion happens to correspond to the simplest member of the family containing the check-sum extended Hamming code[...]
Yet for a moment, let us imagine that this alternative Matrix-style world contains some theoretical physicists, and that one of them asks, "How could we discover whether we live inside a Matrix?". One answer might be "Try to detect the presence of codes in the laws that describe physics." I leave it to you to decide whether Wigner's warning should be applied to the theoretical physicists living in the Matrix — and to us.
One of the things James Gates and some of his colleagues have “seen,” for example, are underlying codes embedded in the cosmos — error-correcting codes, like those that drive computer programs. (Full disclosure: he’s a fan of The Matrix — so am I — and we hear a little bit of that iconic movie in our one-hour podcast.) This is just one of many observations he makes that raises questions, he says, that physics alone can neither answer nor probe.
The Fibonacci numbers are Nature's numbering system. They appear everywhere in Nature, from the leaf arrangement in plants, to the pattern of the florets of a flower, the bracts of a pinecone, or the scales of a pineapple. The Fibonacci numbers are therefore applicable to the growth of every living thing, including a single cell, a grain of wheat, a hive of bees, and even all of mankind.[Source]
Originally posted by Lapislazuli
IF we are all simulated programs in a hard drive of a future super computer....and that is a big IF.. then would this not mean that we are without souls or free will?edit on 22-3-2012 by Lapislazuli because: (no reason given)
Originally posted by Sinny
This just adds to some research I've been delving into that shows that the brain does not create consciousness but is simple a tool to receive it.
Our actual souls/consciousness come from beyond this matrix.