It looks like you're using an Ad Blocker.

Please white-list or disable in your ad-blocking tool.

Thank you.


Some features of ATS will be disabled while you continue to use an ad-blocker.


Neural implant lets paralyzed person type by imagining writing

page: 1

log in


posted on May, 14 2021 @ 04:22 PM
So something pretty awesome. Some researchers have used neural implants to enable typing by thinking about writing. The system was tested using pre trained sentences that allowed a user to mind type at around 90 WPM and 99% accuracy. Another test was done using freeform sentences with a result of around 75 WPM and a 2% error rate. Still pretty damn good for something that feels like some SciFi technology.

The system is in a pre-prototype stage. It has issues involving weekly calibrations and generally, needs a lot of work before it's ready to go.

But, the technology's pretty impressive and could enable paralyzed or quadriplegic people to type and use computers purely through thought.

Link to Study

This week, the academic community provided a rather impressive example of the promise of neural implants. Using an implant, a paralyzed individual managed to type out roughly 90 characters per minute simply by imagining that he was writing those characters out by hand.

Dreaming is doing

Previous attempts at providing typing capabilities to paralyzed people via implants have involved giving subjects a virtual keyboard and letting them maneuver a cursor with their mind. The process is effective but slow, and it requires the user's full attention, as the subject has to track the progress of the cursor and determine when to perform the equivalent of a key press. It also requires the user to spend the time to learn how to control the system.

But there are other possible routes to getting characters out of the brain and onto the page. Somewhere in our writing thought process, we form the intention of using a specific character, and using an implant to track this intention could potentially work. Unfortunately, the process is not especially well understood.

Downstream of that intention, a decision is transmitted to the motor cortex, where it's translated into actions. Again, there's an intent stage, where the motor cortex determines it will form the letter (by typing or writing, for example), which is then translated into the specific muscle motions required to perform the action. These processes are much better understood, and they're what the research team targeted for their new work.

Specifically, the researchers placed two implants in the premotor cortex of a paralyzed person. This area is thought to be involved in forming the intentions to perform movements. Catching these intentions is much more likely to produce a clear signal than catching the movements themselves, which are likely to be complex (any movement involves multiple muscles) and depend on context (where your hand is relative to the page you're writing on, etc.).

With the implants in the right place, the researchers asked the participant to imagine writing letters on a page and recorded the neural activity as he did so.

Overall, the researchers found they could decipher the appropriate character with an accuracy of a bit over 94 percent, but the system required a relatively slow analysis after the neural data was recorded. To get things working in real time, the researchers trained a recurrent neural network to estimate the probability of a signal corresponding to each letter.

Despite working with a relatively small amount of data (only 242 sentences' worth of characters), the system worked remarkably well. The lag between the thought and a character appearing on screen was only about half a second, and the participant was able to produce about 90 characters per minute, easily topping the previous record for implant-driven typing, which was about 25 characters per minute. The raw error rate was only about 5 percent, and applying a system like a typing autocorrect could drop the error rate down to only 1 percent.

The tests were all done with prepared sentences. Once the system was validated, however, the researchers asked the participant to type out free-form answers to questions. Here, the speed went down a bit (to 75 characters a minute) and errors went up to 2 percent after autocorrection, but the system still worked.

As the researchers themselves put it, this "is not yet a complete, clinically viable system." To begin with, it has only been used in a single individual, so we have no idea how well it might work for others. The simplified alphabet used here doesn't contain any digits, capital letters, or most forms of punctuation. And the behavior of the implants changes over time, perhaps because of minor shifts relative to the neurons they read or the build-up of scar tissue, so the system had to be recalibrated regularly—at least once per week to maintain a tolerable error rate.

posted on May, 14 2021 @ 05:21 PM
a reply to: dug88

In other words, “Chips are great! No reason to fear us implanting chips in your brain!”

posted on May, 14 2021 @ 05:23 PM
Awesome and scary at the same time.

What a relief that will be to see people.

But I can see ways it could be abused.

posted on May, 14 2021 @ 06:12 PM
And so begins the The Artilect War.

posted on May, 14 2021 @ 06:23 PM
Sounds like The Tommyknockers. Although Stephen King has said the magical typewriter in that book was essentially powered by coc aine in his own life.

posted on May, 14 2021 @ 07:58 PM
a reply to: dug88

I have been following the improvements in prosthetic limbs, they are getting really good, one company is printing them.I think the implications like everything in this field could be used for good or evil. The interface from the nerves are getting sophisticated anyone remembers a sci-fi story called "Volamp" where to get a really well-paid job you could volunteer to have an arm removed and get fitted with a highly efficient prosthetic.

top topics

log in