It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: butcherguy
a reply to: Kashai
The way that I understand a circular saw (from having cut things with them), they actually rotate 360 degrees.
This shark-like creature had a unique set of teeth, but they were more similar to a snail's shell than a circular saw blade. The teeth did not spin in the jaw 'like a buzz saw'.
It is still a theory that the tooth whorl even grew inside of the mouth.
Scientific American
After over 100 years, the mystery of the Helicoprion jaw is solved. That doesn’t make the prehistoric fish any less enigmatic. With only a single blade of teeth, how did Helicoprion actually catch and consume prey? Tapanila and other researchers are only just starting to investigate this question. Based on the new restoration, Tapanila suggests that “The analogy to a circular saw is almost perfect.” Not only was the tooth whorl shaped like a saw, but, Tapanila points out, “as the jaw closed [the tooth whorl] rotated the teeth backwards in a rotational saw motion.” Such a strategy would have worked well on squid and other soft-bodied cephalopods of the 270 million year old seas. But even with this realization, we are still left with the question of how such a strange arrangement – singular in the history of life on Earth – evolved in the first place.
Tapanila and colleagues are keeping after the enigmas surrounding the fish through studying Helicoprion fossils found in Idaho and elsewhere, including a lower jaw that’s even bigger than the one used in the new Biology Letters study. “You know the line from JAWS, ‘You’re going to need a bigger boat’? Well, I need a bigger CT machine,” Tapanila says. “I have the world’s largest Helicoprion specimen in the world sitting in my museum, and I see evidence for jaws.” The two-foot-wide jaw is too big for a conventional CT scanner, though. “It’s got all the features we hope,” Tapanila says, “but it’s massive, so I need to bring it to [a facility in] Pasadena.” That giant jaw will yield additional clues, and raise new questions. Tapanila suspects that the larger jaw belonged to a different species of Helicoprion than the one he and his team previously scanned, and the features of the bigger jaw might provide new information about how these buzzsaw fish differed across species and body sizes. There are still many secrets to draw out from the jaws of Helicoprion.
Yet, even with the remaining mysteries, to see the new vision come out of the rock is a dream come true for Ray Troll. “It’s been a twenty year quest for me,” he says, which all started “when I first saw a whorl and became obsessed by it.” “I’ve drawn the animal so many hundreds of times. Literally hundreds.” And not only is Troll “thrilled” to see the new research, but the new identity of Helicoprion is a bit of a personal victory. Troll heads the wonderfully geeky band Ray Troll and the Ratfish Wranglers. For so long, it seemed that the object of his endless fascination was a shark, but now, Troll says, “It’s really cool to have [Helicoprion] circle back around” to the ratfish side of the family tree. “My two obsessions have all converged,” Troll enthuses, in a spectacular ratfish relative that has for so long challenged scientists to chase after its circuitous spiral trail.
You are incorrect..
originally posted by: Kashai
a reply to: butcherguy
Excuse me I have posted all the data that is available. If you are suggesting that scientist who presented the conclusion is wrong, perhaps you should send him an Email.
“as the jaw closed [the tooth whorl] rotated the teeth backwards in a rotational saw motion.”
“as the jaw closed [the tooth whorl] rotated the teeth backwards in a rotational saw motion.”
Contrary to the popular long-jaw restorations, the tooth whorl of Helicoprion totally filled the lower jaw. The jaw joint sat right behind the weapon, and the spiral dentition was buttressed by jaw cartilage on either side. And, even stranger, Helicoprion didn’t have any upper teeth to speak of. The spiral of continually-added teeth was the creature’s entire dental armament.
Scraps of Helicoprion skull indicate that the fish wasn’t really a shark, either. Of course, as Tapanila points out, the word “shark” doesn’t have the simple definition we might expect. “‘Shark’ doesn’t have biological meaning anymore,” Tapanila told me, confiding “If I talk to a fish expert, and I say ‘shark,’ they get very angry.” Ichthyologists are rapidly rearranging the fish family tree and the definitions for different groups. All the same, the skull cartilage of Helicoprion included a very specific double connection that is characteristic of a group of cartilaginous fish called Euchondrocephali – commonly known as ratfish and chimeras.
Helicoprion was not a buzzsaw predecessor to great white or tiger sharks. The fish belonged to the lineage one branch over, near the evolutionary split where the ancestors of living sharks and ratfish parted ways. (And this pulls other weird prehistoric fish with fearsome teeth – such as the scissor-jawed Edestus – away from the shark line and into the ratfish line.) In general form, Tapanila and Troll expect, Helicoprion was an archaic member of the wider ratfish group that looked quite shark-like. And these predators reached impressive sizes. Tapanila estimates that a large Helicoprion would have been about 20 to 25 feet long.