It looks like you're using an Ad Blocker.

Please white-list or disable AboveTopSecret.com in your ad-blocking tool.

Thank you.

 

Some features of ATS will be disabled while you continue to use an ad-blocker.

 

Reasons to be jolly about 2008 (quantum physics)

page: 1
0

log in

join
share:

posted on Dec, 30 2008 @ 08:54 PM
link   
Reasons to be jolly about 2008 is an excellent article in New Scientist:

"The first shows that with a good theory and hard work, we can unlock nature's deepest mysteries. The story began in the 1960s, when it was proposed that protons and neutrons are made up of constituents called quarks. Experiments then demonstrated that protons did contain point-like components. These bounced around inside protons as if they were free. So why didn't they get knocked out of protons when physicists smashed them about in accelerators?

An answer came in the 1970s, when a fascinating property of quantum chromodynamics, the theory of the strong interaction between quarks, was discovered. According to QCD, the attraction between quarks gets weaker the closer they are, and vice versa. Experiments confirmed the idea over very small distances, but at the scale of protons, the forces became too strong to calculate with available mathematics. This was frustrating because in principle QCD should explain all the properties of protons and neutrons, including their masses.

Physicists have been working for more than three decades to describe the theory on a finite lattice of points in space and time, so that it could be crunched by a supercomputer. Now, a European collaboration using this method has reported a remarkable result.

They found that QCD predicts the masses of the lightest strongly interacting particles, with an accuracy of 1 to 2 per cent. This may not seem spectacular until you realise that quarks only contribute a very small fraction of the total mass of the particles they make up. Most of the mass comes from the quantum fields holding the quarks together. A theory drawn up to explain an obscure puzzle about elementary particles has now allowed us to calculate from first principles the properties of a whole range of other particles, including the neutron, which is responsible for more of the mass of the Earth than any other particle."

"The second reason to be jolly is a set of puzzling satellite results. While looking at the cosmic rays zooming through our galaxy, one satellite saw more high-energy positrons (anti-electrons) than expected, while another saw an excess of high-energy electrons.

One explanation is that particles and antiparticles of dark matter (thought to make up most of the mass of our galaxy, but yet to be discovered) collide and annihilate each other, throwing out these positrons and electrons. Unfortunately, the abundance and energies of the positrons and electrons don't match what would be expected from the favoured dark matter candidate - a particle called the neutralino. Undaunted, theorists have come up with alternative dark matter ideas for these excess particles ranging from the baroque to the bizarre, excited that they could finally represent direct evidence for a new world of physics."

I like this author's point of view about new theories!



posted on Dec, 30 2008 @ 10:00 PM
link   
blog.myspace.com...



www.myspace.com...





At your leisure please review the work of Marko Rodin and Nassim Haramein.



posted on Dec, 30 2008 @ 10:34 PM
link   
Was a good read.. 2/3 thumbs up

Whoever named this stuff though had to have been working the helium, if you know what I mean.

w-ino, quark, squark, boson (assuming the standard model pans out), charm, strange

Exactly what were they thinking? Heck, even chromo(color)dynamics has nothing to do with color. Somebody said... :Hey look there's 3, we could label them R,G,B.

Some of those guys get so deep into theory I'm not sure they could build a simple circuit with a battery, two wires, and a light-bulb.

Speaking of theory... any predictions?
Standard model - my favorite
5 different string theories
M theory
Super-symmetry

If they actually end up with missing energy while searching for the graviton, I'm gonna get a little freaked out. (extra dimensions woo-hoo!)

330 graduate students at Fermilab were polled to see what they believed would be the next discovery in particle physics. The result is shown in the plot below.


dorigo.wordpress.com...



new topics
 
0

log in

join