It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Now, research from UNC School of Medicine biochemist Charles Carter, PhD, appearing in the September 13 issue of the Journal of Biological Chemistry, offers an intriguing new view on how life began. Carter's work is based on lab experiments during which his team recreated ancient protein enzymes that likely played a vital role in helping create life on Earth. Carter's finding flies in the face of the widely-held theory that Ribonucleic Acid (RNA) self-replicated without the aid of simple proteins and eventually led to life as we know it.
Our genetic code is translated by two super-families of modern-day enzymes. Carter's research team created and superimposed digital three-dimensional versions of the two super-families to see how their structures aligned. Carter found that all the enzymes have virtually identical cores that can be extracted to produce "molecular fossils" he calls Urzymes—Ur meaning earliest or original. The other parts, he said, are variations that were introduced later, as evolution unfolded.
"To think that these two Urzymes might have launched protein synthesis before there was life on Earth is totally electrifying," Carter said. "I can't imagine a much more exciting result to be working on, if one is interested in the origin of life."
"These seemingly impossibly fast rates of evolution implied by this Cambrian explosion have long been exploited by opponents of evolution. Darwin himself famously considered that this was at odds with the normal evolutionary processes.
"In this study we've estimated that rates of both morphological and genetic evolution during the Cambrian explosion were five times faster than today – quite rapid, but perfectly consistent with Darwin's theory of evolution."
In earlier work team lead Niles Lehman had found that if long RNA molecules known as ribozymes were cut into fragments and then placed together in a Petri dish, they would over time reassemble themselves into their original configuration. In this new research, Lehman et al altered three ribozyme samples so that they were identical save for one letter that allowed for distinguishing among them. Each was cut into two pieces and placed in a Petri dish. The team found that if the ribozymes were placed together in a Petri dish, they reassembled themselves faster than if they were put in the dish alone. This occurred, they report, because one of the ribozymes helped another reassemble, who then helped a third reassemble who in turn helped the first reassemble, which formed a closed loop network.
To see if the same result might be possible in a more chaotic environment, the researchers placed 48 cut ribozymenes in a test tube with millions of other RNA molecules and found that the original 48 found a way to locate their other parts and each other and helped one another reassemble; again much faster than any of them would have alone.
(your second set of quotes)
In earlier work team lead Niles Lehman had found that if long RNA molecules known as ribozymes were cut into fragments and then placed together in a Petri dish, they would over time reassemble themselves into their original configuration.
Text"Nature always finds a way..."