It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
...
The prompt E1 couples well to local antennas, short (1–10 m) cable runs, equipment in buildings (through apertures), and can disrupt or damage integrated circuit (IC)-based control systems, sensors, communication systems, protective systems, computers, and similar devices. The most common protection against the effects of E1 is the use of electromagnetic shielding, filters, and surge arresters [11].
E2 couples well to longer conductive lines, vertical antenna towers, and aircraft with trailing wire antennas. It is similar to lightning in its time-dependence, but would, of course, be more geographically widespread, while being lower in intensity, especially for a low-yield weapon. As the EMP commission acknowledges, the E2 pulse would not, in general, be an issue for critical infrastructure systems since they already have protective measures for defense against occasional lightning strikes.
The E3 pulse couples well to power and long communications lines including undersea and underground cables. The low frequencies (sub-Hertz) of E3 make shielding and isolation difficult. Experience from both geomagnetic storms and 1960s-era Russian and American nuclear testing indicates that there is a great likelihood of commercial power and landline disruption from E3 pulses of powerful (>100 kt) nuclear devices. Small isolated systems will however, typically, be unaffected by E3. The E3 environment is so slowly varying that quasi-DC analysis models are appropriate for estimating the behavior of the induced power system responses.
Dr. Radsaky and Mr. Kappenman have summarized the effects of E1 and E3 from a large nuclear device in their statement before the House Homeland Security Subcommittee on Emerging Threats, Cybersecurity, and Science and Technology:
For the operation of the electric power grid, the… E1 and E3 pulses are the most important. Research performed for the EMP Commission clearly indicates the following concerns:
1) Malfunctions and damage to solid-state relays in electric substations (E1)
2) Malfunctions and damage to computer controls in power generation facilities, substations, and control centers (E1)
3) Malfunctions and damage to power system communications (E1)
4) Flashover and damage to distribution class insulators (E1)
5) Voltage collapse of the power grid due to transformer saturation (E3)
6) Damage to [High Voltage] HV and [Extremely High Voltage] EHV transformers due to internal heating (E3)
The E1, E2, and E3 EMP subcomponents scale differently with weapon yield (and design) so it is important to be clear what effects one is interested in: i.e. effects on IC-based electronics (which couple strongly with E1) or electrical power systems connected to long-lines (which couple most strongly with E3, and auroral EMP). The salient issues are, then, what strengths of E1 and E3 pulses one may expect over what parts of the country from the types of devices adversarial states possibly possess (or may possess in the foreseeable future) and, of course, how likely the actors are to carry out such an attack. Before addressing those questions, it is useful to review the actual measured effects of EMP from Cold War ear nuclear tests.
...
-Space Review
originally posted by: burgerbuddy
Why hang around?
Head south of the border, caravans!
Carbo Wabo! or El Salvador!
Or Canada!
Pacific DC Intertie
The Pacific DC Intertie (also called Path 65) is an electric power transmission line that transmits electricity from the Pacific Northwest to the Los Angeles area using high voltage direct current (HVDC). The line capacity is 3,100 megawatts, which is enough to serve two to three million Los Angeles households and represents almost half (48.7%) of the Los Angeles Department of Water and Power (LADWP) electrical system's peak capacity.[1]
en.wikipedia.org...