It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
originally posted by: GaryN
originally posted by: wildespace
Exo-atmospheric is really, really bright. You know the sunny 16 rule, which is F16 at one over the ISO for a shutter speed? If you follow that rule, you basically can’t go wrong for standing outside in the summertime with a nice sunlit scene. The sunny 16 rule applies to being in orbit, but you have to stop down two more stops because it’s a lot brighter. So that’s an example: Being exo-atmospheric, the sun is a lot brighter.
So why did they use a "Looney 11" settings? Being a lot brighter they should have been using Looney 22?
i.imgur.com...
originally posted by: Soylent Green Is People
originally posted by: Unrealised
originally posted by: Chadwickus
a reply to: Unrealised
I understand that it would be a similar brightness, but it will appear much whiter and brighter due to no scatter from an atmosphere.
So basically, you'd need some serious eye protection to save you going blind?
The Moon's albedo is about 0.12. That is to say that 12% of the sunlight shining on the moon would reflect back up to a person standing on the moon (that intensity lessens by the inverse square law as an observer gets farther from the surface).
Moon Albedo
I can't find the source now, but I read somewhere that the light on the Moon is similar to the light reflecting off of an old asphalt car park on a sunny day. And that's old asphalt (more grey); new asphalt would be darker.
Plus, as has been mentioned, the intensity of the sunlight reaching the Moon's surface would be brighter than on Earth to begin with because Earth's atmosphere scatters the light somewhat. The Apollo astronauts had visor filters, and they made an effort not to point the cameras toward the Sun. This images that do include the sun are all awash in sun glare.