It looks like you're using an Ad Blocker.

Please white-list or disable in your ad-blocking tool.

Thank you.


Some features of ATS will be disabled while you continue to use an ad-blocker.


The largest star ever found is 300 times bigger and 10 million times brighter than the Sun

page: 1

log in


posted on Jul, 26 2010 @ 09:37 PM

It's time to rewrite everything we thought we knew about star formation, starting with the theory that stars can't be more than 150 times the size of our Sun. Star R136a1 is twice as big as that supposed upper limit.

To get some sense of scale for this colossus, check out the comparison image up top. Do you see the pale blue star that dwarfs our Sun? OK, now look behind it. That gigantic deep blue region, of which we can only see part of a curve? Yeah, that's R136a1. You could fit our Sun inside R136a1 as many times as you could fit Earth inside Jupiter, and that's a jump in cosmic scale that astronomers honestly thought was impossible.

The star is found in the R136 star cluster, located some 165,000 light-years away in our neighboring galaxy the Large Magellanic Cloud. The cluster is home to several stars that shatter the old accepted limit of 150 solar masses, although no other star is quite so massive as R136a1. When it was born about a million years ago, the star weighed 320 times as much as the Sun, but it's already shed quite a bit of that mass and is now a relatively svelte 265 solar masses. Again, it bears pointing out that the amount of mass this star has ejected in a million years is still more than 50 times greater than our Sun.

The brightness of the star also shouldn't be overestimated - it's 10 million times brighter than the Sun, which is about how much brighter the Sun is than the full Moon. Indeed, as Keele University's Raphael Hirschi explains, that's just the beginning of what R136a1 would do if it found itself in our Solar Sytem:

This makes you have to do a double take on what a solar system could be like! Stars this huge could have solar moons!

You could fit our Sun inside R136a1 as many times as you could fit Earth inside Jupiter.

You could have a blue dwarf and a few of our suns orbiting one of these, along with tons of red dwarfs. You could also have planets orbiting it, along with planets orbiting its "moons." A quad star system would be small in comparison. This could be like Jupiter and its many moons. Imagine how many Earths or Jupiters that can fit in it? This would redefine how you would look for habitable planets.

posted on Jul, 27 2010 @ 12:37 AM
Awesome ! Huh...

In fact the majority of star systems are a binary or triple star system.

I think it could b possible for a star to protect life within its personal heliosphere from the death rays of a cosmic giant... Who knows ?

posted on Jul, 27 2010 @ 12:57 AM
It's not remotely the largest star, it's the heaviest. Astronomy illiterate people can't seem to distinguish between "massive" and "large". It's not 300 times bigger than earth, it's 300 times heavier. I explained this on the other thread.

Originally posted by Welfhard
To put it in proportion R136a1 is about 320 times as heavy as our sun and around 30 times the size. VY Canis Majoris is only about 15 to 25 times as heavy as our sun but between 1800 and 2100 the diameter of our sun.

R1's diameter is approx 4,872,000 kilometres, weighing in at approx 15.8 x 10^26 kilograms.
VY's diameter is approx 2,700,000,000 kilometres, weighing in at approx 1.19 x 10^26 kilograms.

This is the real largest star known, VY Canis Majoris, with our star.

[edit on 27-7-2010 by Welfhard]

posted on Jul, 27 2010 @ 04:37 AM
And I reckon this one will still be cited as having formed through gradual accretion.
It should be the death knell for gravitational based universe theories, for certain. I would welcome some body explaining just how dust can accrete to eventually form something like this......or, for that matter, how dust is ever supposed to manage to accrete in a vacuum anyway.....

[edit on 27-7-2010 by neil wilkes]

posted on Jul, 27 2010 @ 04:19 PM
reply to post by Welfhard

So then it isn't the heaviest star ?

There are much more massive objects around that are still labeled star.
Although different all together. Still..

top topics

log in