Tiny device can detect hidden nuclear weapons, materials

page: 1
0

log in

join

posted on Mar, 2 2003 @ 11:53 AM
link   
A small, portable detector for finding concealed nuclear weapons and materials has been developed by the U.S. Department of Energy's Argonne National Laboratory. When fully developed, the device could assist international inspectors charged with preventing smuggling and unauthorized use of nuclear weapons and materials.

The heart of the Argonne device is a small wafer of gallium arsenide (GaAs), a semiconducting material similar to silicon. When coated with boron or lithium, GaAs can detect neutrons, such as those emitted by the fissile materials that fuel nuclear weapons. Patents are pending on several detectors and their components.

The wafers are small, require less than 50 volts of power and operate at room temperature. They also can withstand relatively high radiation fields and do not degrade over time.

"The working portion of the wafer is about the diameter of a collar button, but thinner," said Raymond Klann, who leads the group from Argonne's Technology Development Division that developed the wafer and detector. "It is fairly straightforward to make full-sized detector systems the size of a deck of cards, or even smaller. Something that small can be used covertly, if necessary, by weapons inspectors to monitor nuclear facilities."

The key to detection, he said, is to coat the gallium-arsenide with something like boron or lithium. When neutrons strike the coating, they produce a cascade of charged particles that is easy to detect.

The wafers are made by inexpensive, conventional microchip-processing techniques, Klann said. They can be tailor-made for specific applications by varying the type and thickness of the coating.

Compared to other neutron detectors, Klann's have a number of advantages.

One common type of neutron detector is based on a tube of gas, which is ionized when neutrons pass through the tube. These detectors are larger in size and require more power than the GaAs detector.

Another common neutron detector uses silicon semiconductors. Compared to the GaAs wafer, silicon-based detectors use more power, require cooling and degrade more quickly when exposed to radiation.

Klann's team also found that detection is improved by etching the wafer with cylindrical holes, like the dimples on a golf ball.

"We're testing various coating materials and thicknesses," he said, "as well as various combinations of hole sizes and spacings to find the best configurations for specific applications."

Klann's group has built and successfully demonstrated prototype detectors. Argonne is now looking for commercial partners interested in developing the detectors for the commercial marketplace.

Other possible uses for GaAs-based detectors include high-vacuum space applications or any other work requiring neutron detection.

Development of the wafer and detector was funded by the U.S. Department of Energy's Office of Science and the Spallation Neutron Source project.

The nationís first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago as part of the U.S. Department of Energy's national laboratory system.

Link - www.globaltechnoscan.com...




posted on Mar, 2 2003 @ 03:36 PM
link   
This is not strictly related to this subject, but one thing that a lot of people are not aware of is that nuclear detectors of one form or another have been in use in this country since the 50s. About the time that NORAD was constructed, we had early nuclear detectors emplaced in most major cities in the US. These detectors were specifically designed to detect a local nuclear detonation, the idea being to let NORAD know if somehow the opposition found a way of sneaking weapons in without being detected, and suddenly several cities were detonated. (Some are still in place, and are visible in some large cities, usually on radio towers, and appear to be small white cones on small extension arms off the sides of the towers).

In the late 80s and early 90s many of these were replaced with upgraded models that could detect nuclear material within a vicinity. I am not sure what the detection threshhold is with these new detectors, although they are supposedly able to spot the Russian "backpack" nukes. I would imagine they are able to detect a "dirty bomb", and therefore dont expect any attack to involve a dirty bomb. (Biological or chemical is much more likely).





new topics
 
0

log in

join