It looks like you're using an Ad Blocker.
Please white-list or disable AboveTopSecret.com in your ad-blocking tool.
Thank you.
Some features of ATS will be disabled while you continue to use an ad-blocker.
Quantum + computing = quantum computing The key features of an ordinary computer—bits, registers, logic gates, algorithms, and so on—have analogous features in a quantum computer. Instead of bits, a quantum computer has quantum bits or qubits, which work in a particularly intriguing way. Where a bit can store either a zero or a 1, a qubit can store a zero, a one, both zero and one, or an infinite number of values in between—and be in multiple states (store multiple values) at the same time! If that sounds confusing, think back to light being a particle and a wave at the same time, Schrödinger's cat being alive and dead, or a car being a bicycle and a bus. A gentler way to think of the numbers qubits store is through the physics concept of superposition (where two waves add to make a third one that contains both of the originals). If you blow on something like a flute, the pipe fills up with a standing wave: a wave made up of a fundamental frequency (the basic note you're playing) and lots of overtones or harmonics (higher-frequency multiples of the fundamental). The wave inside the pipe contains all these waves simultaneously: they're added together to make a combined wave that includes them all. Qubits use superposition to represent multiple states (multiple numeric values) simultaneously in a similar way. Just as a quantum computer can store multiple numbers at once, so it can process them simultaneously. Instead of working in serial (doing a series of things one at a time in a sequence), it can work in parallel (doing multiple things at the same time). Only when you try to find out what state it's actually in at any given moment (by measuring it, in other words) does it "collapse" into one of its possible states—and that gives you the answer to your problem. Estimates suggest a quantum computer's ability to work in parallel would make it millions of times faster than any conventional computer... if only we could build it! So how would we do that? explainthatstuff.com
Quantum models
Some scholars conjecture that a quantum mechanical system which somehow uses an infinite superposition of states could compute a non-computable function.[21] This is not possible using the standard qubit-model quantum computer, because it is proven that a regular quantum computer is PSPACE-reducible (a quantum computer running in polynomial time can be simulated by a classical computer running in polynomial space).
originally posted by: Maxatoria
a standard transistor is only able to do two settings off and on...
originally posted by: Maxatoria
a standard transistor is only able to do two settings off and on and they're physical devices.
originally posted by: Bedlam
a reply to: DaRAGE
The simple answer is...no. The longer answer is ... sorry, no.
If you get down to transistors that are designed to cause this sort of behavior, then yes.
But it takes a QDL sort of qubit element to do that.
originally posted by: Maxatoria
a reply to: evc1shop
Its been 20+ years since i last had to fart around with such stuff at uni so i'm a bit rusty but i was thinking more in the computing side