It looks like you're using an Ad Blocker.

Please white-list or disable AboveTopSecret.com in your ad-blocking tool.

Thank you.

 

Some features of ATS will be disabled while you continue to use an ad-blocker.

 

I Present to You.. Dark Matter

page: 1
63
<<   2  3  4 >>

log in

join
share:
+42 more 
posted on Jan, 27 2016 @ 12:15 PM
link   


What stands where nothing can be seen? For decades scientists have been puzzled by the greatest mystery of the Universe: Dark Matter. An invisible form of matter is spanning all across the cosmos. Although it can never be seen, we do know it is there; for its sheer mass is bending spacetime itself, giving mass to our galaxy and preventing its stars - including our Sun - from flying out to the depths of intergalactic space.

But this mystery has just been shattered. For the very first time in History, a set of particles have revealed themselves - as natural implications of the SPP Theory. Their high mass, their unability to emit or absorb light, and their particular interaction profile, is clear evidences that they might actually compose nothing less than Dark Matter itself - one of the greatest unsolved problems in physics.
Ladies and gentlemen, I present to you... Dark Matter.



The SPPT models every single particles of the Standard Model (including their behaviour) by attributing the concept of compositness to them. A subject of controversy amongst the more conservative sphere of physics, compositeness is the theory that "elementary" particles are actually composed of preons, tiny building blocks which by themselves compose quite literally everything. SPPT models conventional particles as sets of 6 preons, all forming tiny octahedrons (diamond-shaped configuration). As an unexpected side-effect, the SPPT also predicts the existence of stable particles with 4 preons (since they can form platonic solids, tetrahedrons). Five of such exotic particles emerge up from the model, and they happen to fit exactly the estimated properties of Dark Matter. These five particles are o (for "obscure"), the antiparticle of o, l (for "lightless"), the antiparticle of l, and i (for "invisible"). Their existence would finally map the until-now uncharted territory of dark matter and complete the Standard Model:



These five particles would be permeating space all around us (even around our very atoms), giving the Galaxy its mass and enabling our sun to maintain a relatively stable orbit around the Core.


A Brief Exploration of Dark Matter

Unlike photons, Dark Matter particles have only 4 preons. They simply do not have enough preons to form photons. In other words, Dark Matter cannot turn into light. Passing photons simply ignore the particles, leaving them in their eternal darkness. Thousands of light-years of dark matter would be as transparent to light rays as if it was never there.

Dark Matter particles cannot form conventional colours (an important feature of the Strong Force) - this explains why they cannot interact with normal matter via the Strong Force.

Just like it was predicted of WIMPs, dark matter particles can interact with normal matter via Weak Force bosons. They can exchange preons (exchanges which briefly form a weak boson) with normal matter particles. The table below gives a rough guess of the possible mode of weak interactions between normal matter particles and dark matter particles:



Exchanges are done in packets of 3 preons. i particles do not have enough preons of the same flavour, this explains why i is the only dark matter particle which can never interact with any particles. But this has quite interesting implications; for instance, a container made of i dark matter could store antimatter forever.


The Mass of Dark Matter

The high mass of the SPPT dark matter particles is infered by none other than the so-called "Mass Paradox" principle itself. In short, individual preons are more massive than the particle they compose. So, particles with 4 preons will be more massive than particles with 6 preons. But by how much? Fortunately for us, the SPP Theory gives us a clue. In the SPPT, the decay of an up quark is modelled as an event involving four groups of 3 preons each - an event whose total mass is about 80,400 MeV, that is, the mass of the W boson. The mass of one group of 3 preons can thus be measured to be about 20100 MeV (80,400 divided by four). Since the mass of a group of 4 preons would stand at 2/3 the difference between the mass of the 3-preons system and the mass of the 6-preons system, then it follows that 4-preons dark matter particles would be about 13,400 MeV.

This means that if a closed system contains both dark matter particles and hydrogen atoms at equal amounts, the dark matter would be responsible for about 93% of the mass in the system. This is quite close to the actual estimated ratio of the Universe, which is 84.5%. The actual lower ratio is explained by the fact that the Universe isn't composed of just hydrogen but also of heavier atoms.

This mighty gravitational pull from dark matter particles are the only way dark matter can interact with the universe, besides interaction via Weak Force bosons.


CHAMPs or WIMPs? Finally Settling the Debate

Now according to the general consensus, dark matter out there would most likely be made of electrically-neutral particles (WIMPs). This gave rise to a considerable debate which is still raging today. Although there are some evidences that dark matter is made of charged massive particles (CHAMPs), the consensus is that dark matter has zero electric charge. But now four out of the five dark matter particles in the SPPT carry charge - so is dark matter neutral or not? The answer to the debate lies in a period of the Universe called the Photon Epoch.

Remember that dark matter cannot annihilate into photons. They simply cannot form photons (not enough preons). Thus, at the beginning of the Universe, when all of matter coupled with its corresponding antimatter (the Photon Epoch of the Universe, which has been called that way because annihilation gives off light), dark matter did the same with its corresponding dark antimatter. But whereas matter annihilated upon contact with its antimatter, dark matter failed to do the same upon coupling with dark antimatter.



Thus, to this day, the majority of dark matter would be populated with pairs of coupled dark matter / dark antimatter particles. The total electric charge of such pairs is zero, thus it explains why dark matter has never been observed to electrically interact with the visible universe. In themselves, dark matter particles are charged CHAMPs, but they really are forming neutral WIMPs all across the cosmos.



The Invisible Kingdom

Simply put, the part of our galaxy which we cannot see would be mysterious no more. We would finally know the nature of one of the greatest features of our universe. Entire seas of dark matter, made of particles which are so forsaken by light that they cannot even annihilate, would be flooding space over intergalactic scales and giving the Universe most of its mass. The invisible ocean of the dark matter particles would be rotating and circling the galaxy, like a ghost never seen; but nevertheless giving weight to our galaxy - and like a cosmic guardian keeping the stars inside the night sky.

And at last, we might have five leads to explore this invisible territory.


edit on 27-1-2016 by swanne because: (no reason given)




posted on Jan, 27 2016 @ 12:22 PM
link   
a reply to: swanne

Nice article.

I do wonder how long it will take to actually see them though. We couldn't see certain lights years ago, but now we can.

I doubt we'll have a definitive answer of their existence in my lifetime, but I can certainly hope.



posted on Jan, 27 2016 @ 12:26 PM
link   
Wow another good thread
a reply to: swanne



posted on Jan, 27 2016 @ 12:29 PM
link   
Any sources for further research?



posted on Jan, 27 2016 @ 12:29 PM
link   
I remember having to find dark matter to defeat Omega Weapon.



posted on Jan, 27 2016 @ 12:30 PM
link   
a reply to: swanne

Ey
!
Really cool stuff. s&f



posted on Jan, 27 2016 @ 12:31 PM
link   
a reply to: verschickter


Any sources for further research?


The theory is mine, mate. I am the one who created SPPT and discovered that it predicted the existence of five dark matter particles.



edit on 27-1-2016 by swanne because: (no reason given)



posted on Jan, 27 2016 @ 12:36 PM
link   

originally posted by: swanne
a reply to: verschickter


Any sources for further research?


The theory is mine, mate. I am the one who created SPPT and discovered that it predicted the existence of five dark matter particles.




Of course you are.



posted on Jan, 27 2016 @ 12:36 PM
link   

originally posted by: verschickter
Any sources for further research?


This video(specifically at the :13 second mark) solves most of the paradoxes one encounters with explaining dark matter and Einsteins issue(s) with a unification theory:
youtu.be...
-Christosterone



posted on Jan, 27 2016 @ 12:38 PM
link   
a reply to: swanne

Nice! So the five dark matter particles were found? Because you say predicted and discovered.



posted on Jan, 27 2016 @ 12:45 PM
link   

originally posted by: TerryDon79
a reply to: swanne

Nice article.

I do wonder how long it will take to actually see them though. We couldn't see certain lights years ago, but now we can.

I doubt we'll have a definitive answer of their existence in my lifetime, but I can certainly hope.


Does it Matter?

Nice Op Swanne .. Haven't seen u around forever



posted on Jan, 27 2016 @ 12:46 PM
link   
Thus far, no evidence of Dark Matter particles being charged. If they were charged, we would have already discovered them... and they would interact via both Weak and EM



posted on Jan, 27 2016 @ 12:48 PM
link   

originally posted by: Layaly

originally posted by: TerryDon79
a reply to: swanne

Nice article.

I do wonder how long it will take to actually see them though. We couldn't see certain lights years ago, but now we can.

I doubt we'll have a definitive answer of their existence in my lifetime, but I can certainly hope.


Does it Matter?

Nice Op Swanne .. Haven't seen u around forever


Yes and no


If we could physically detect it then there might be a way to "catch" it. And there's a theory of making a dark matter energy reactor. Possibly super clean energy, non-emission flight etc.

It's all theories though.



posted on Jan, 27 2016 @ 12:49 PM
link   

originally posted by: ErosA433
Thus far, no evidence of Dark Matter particles being charged. If they were charged, we would have already discovered them... and they would interact via both Weak and EM

I know. Read the op mate. I have just explained why the five dark matter particles actually form WIMPs.

Quarks are charged - that does not prevent the neutron from having zero charge.




posted on Jan, 27 2016 @ 01:31 PM
link   
a reply to: swanne

Wait... You invented " surface plasmon polariton theory"?

GTFO!!!!

Great OP BTW, very interesting.



posted on Jan, 27 2016 @ 01:32 PM
link   
a reply to: swanne
The only problem is that dark matter most likely doesn't exist.

Two Canadian astronomers think there is a good reason dark matter, a mysterious substance thought to make up the bulk of matter in the universe, has never been directly detected: It doesn't exist.
Space.com

The problem seems to be a misunderstanding of plasma physics and a refusal to apply what we do know to cosmic phenomena. The Universe is said to be 99.99% plasma (in a state of plasma) yet the understanding and application of plasma physics in cosmology is almost completely absent.

You might be interested in reading books by Hannes Alfven; Cosmic Plasma, Evolution of the Solar System
I just found this link (below) which seems to mimic the above linked book by Alfven; Cosmic Plasma.
Paradigm Transition in Cosmic Plasma Physics
Or Anthoney Perrat; Physics of a Plasma Universe
Perrat's published papers.

I could hardly begin to argue against dark matter but I think there is a tremendous amount of information that could better explain many observed phenomena that originally gave rise to the theory of dark matter.
edit on 1/27/2016 by Devino because: (no reason given)



posted on Jan, 27 2016 @ 02:00 PM
link   
a reply to: swanne

Awesome, thank you for the thread. I don't know how accurate it is, or completely understand the details (of course), but it seems sound. What's truly impressive is that we're even at a point where such things can be discussed - it wasn't long ago that anti-matter and bosons weren't even known to be real things (heck, it wasn't even that long ago most of this hadn't even really been theorized.) Keep going, science!! Great thread Swanne.



posted on Jan, 27 2016 @ 02:04 PM
link   
can we get some sources pls, from Krauss, CERN, or any Uni? is this hypothesis or is there data?

oh nevermind. just be careful predicting what we need to find. in order to account for the entire mass of the universe may lead you to an unknown we are unable to find or even contemplate. good read though.
edit on 27-1-2016 by vjr1113 because: (no reason given)



posted on Jan, 27 2016 @ 02:07 PM
link   

originally posted by: vjr1113
can we get some sources pls, from Krauss, CERN, or any Uni? is this hypothesis or is there data?

It's a hypothesis! My hypothesis! No "Uni" can detect dark matter yet.



Edit:

I have just seen your edit. Cheers to that mate.


edit on 27-1-2016 by swanne because: (no reason given)



posted on Jan, 27 2016 @ 02:10 PM
link   
a reply to: swanne

So against what you wrote to me, nothing was discovered that you predicted? I see why I didn´t get an answer.




top topics



 
63
<<   2  3  4 >>

log in

join