It looks like you're using an Ad Blocker.

Please white-list or disable AboveTopSecret.com in your ad-blocking tool.

Thank you.

 

Some features of ATS will be disabled while you continue to use an ad-blocker.

 

'Cloaking' device uses ordinary lenses to hide objects across range of angles

page: 1
3

log in

join
share:

posted on Sep, 29 2014 @ 02:54 PM
link   

"There've been many high tech approaches to cloaking and the basic idea behind these is to take light and have it pass around something as if it isn't there, often using high-tech or exotic materials," said John Howell, a professor of physics at the University of Rochester. Forgoing the specialized components, Howell and graduate student Joseph Choi developed a combination of four standard lenses that keeps the object hidden as the viewer moves up to several degrees away from the optimal viewing position.

"This is the first device that we know of that can do three-dimensional, continuously multidirectional cloaking, which works for transmitting rays in the visible spectrum," said Choi, a PhD student at Rochester's Institute of Optics.

Many cloaking designs work fine when you look at an object straight on, but if you move your viewpoint even a little, the object becomes visible, explains Howell. Choi added that previous cloaking devices can also cause the background to shift drastically, making it obvious that the cloaking device is present.

In order to both cloak an object and leave the background undisturbed, the researchers determined the lens type and power needed, as well as the precise distance to separate the four lenses. To test their device, they placed the cloaked object in front of a grid background. As they looked through the lenses and changed their viewing angle by moving from side to side, the grid shifted accordingly as if the cloaking device was not there. There was no discontinuity in the grid lines behind the cloaked object, compared to the background, and the grid sizes (magnification) matched.

The Rochester Cloak can be scaled up as large as the size of the lenses, allowing fairly large objects to be cloaked. And, unlike some other devices, it's broadband so it works for the whole visible spectrum of light, rather than only for specific frequencies.


The Rochester Cloak is an improvement on current cloaking devices but it isn't perfect, yet. The cloak bends light and sends it through the center of the device, so the on-axis region cannot be blocked or cloaked. This means that the cloaked region is shaped like a doughnut. They have slightly more complicated designs that solve the problem. Also, the cloak has edge effects, but these can be reduced when sufficiently large lenses are used.

In a new paper submitted to the journal Optics Express Howell and Choi provide a mathematical formalism for this type of cloaking that can work for angles up to 15 degrees, or more. They use a technique called ABCD matrices that describes how light bends when going through lenses, mirrors, or other optical elements.


'Cloaking' device uses ordinary lenses to hide objects across range of angles



posted on Sep, 29 2014 @ 02:58 PM
link   



posted on Sep, 29 2014 @ 03:06 PM
link   
a reply to: gmoneystunt

I searched for it on ATS before I posted but it's hard when people post different titles than the one you are searching for.



posted on Sep, 29 2014 @ 04:18 PM
link   

originally posted by: Sabiduria
a reply to: gmoneystunt

I searched for it on ATS before I posted but it's hard when people post different titles than the one you are searching for.

You did use the ATS recommended method, so now't wrong.
Here's the video,





top topics
 
3

log in

join